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ABSTRACT 
MapReduce provides a parallel and scalable programming model 
for data-intensive business and scientific applications. 
MapReduce and its de facto open source project, called Hadoop, 
support parallel processing on large datasets with capabilities 
including automatic data partitioning and distribution, load 
balancing, and fault tolerance management. Meanwhile, scientific 
workflow management systems, e.g., Kepler, Taverna, Triana, and 
Pegasus, have demonstrated their ability to help domain scientists 
solve scientific problems by synthesizing different data and 
computing resources. By integrating Hadoop with Kepler, we 
provide an easy-to-use architecture that facilitates users to 
compose and execute MapReduce applications in Kepler scientific 
workflows.  Our implementation demonstrates that many 
characteristics of scientific workflow management systems, e.g., 
graphical user interface and component reuse and sharing, are 
very complementary to those of MapReduce. Using the presented 
Hadoop components in Kepler, scientists can easily utilize 
MapReduce in their domain-specific problems and connect them 
with other tasks in a workflow through the Kepler graphical user 
interface. We validate the feasibility of our approach via a word 
count use case. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Distributed Applications; D.2.11 [Software 
Engineering]: Software Architectures – Domain-specific 
architectures. 

General Terms 
Design, Experimentation, Performance 

Keywords 
MapReduce, Kepler, Hadoop, scientific workflow, parallel 
computing, distributed computing, easy-to-use. 

1. INTRODUCTION 
MapReduce [1] provides a parallel and scalable programming 
model for data-intensive business and scientific analysis. Since 
2003, MapReduce and the open source Hadoop [2] platform based 
on MapReduce, have been successfully and widely used on many 
business applications that require parallel processing on large 
datasets. Currently, more and more large-scale scientific problems 
are facing similar processing challenges on large scientific 
datasets [3], where MapReduce could potentially help [4, 5]. 
There has been some work utilizing MapReduce and Hadoop for 
scientific problems such as CloudBurst algorithm [6] in 
bioinformatics and MRGIS framework [7] in geoinformatics. 
However, there are still two main difficulties that make it hard for 
domain scientists to benefit from this powerful programming 
model. First, the application logic in MapReduce usually needs to 
be expressed in traditional programming languages, such as Java 
or shell scripts. It is not trivial for scientists to learn the 
MapReduce API and write corresponding programs. Second, only 
a part of the solution for a scientific problem is usually suitable to 
utilize MapReduce. The MapReduce framework needs to be 
easily integrated with other domain applications that do not 
require MapReduce.  

The contribution of this paper alleviates these difficulties through 
a domain-independent and easy-to-use architecture that enables 
the usage of MapReduce in scientific workflows by integrating 
Hadoop with Kepler [8]. Through Kepler, a user-friendly open 
source scientific workflow system, users can easily utilize 
MapReduce in their domain-specific problems and connect them 
with other tasks in a workflow through a graphical user interface. 
Besides application composition and execution, the architecture 
also supports easy reuse and sharing of domain-specific 
MapReduce components through the Kepler infrastructure. 

The paper is organized as follows. In Section 2, we describe 
Kepler, MapReduce and Hadoop. The details of our architecture 
are explained in Sections 3. Section 4 describes the application of 
our architecture for a widely used word count use case. We 
compare our work with related work in Section 5. Finally, we 
conclude and explain future work in Section 6. 
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Figure 1. (a) MapReduce actor. (b) Map sub-workflow in MapReduce actor. (c) Reduce sub-workflow in MapReduce actor.

2. BACKGROUND 
2.1 Kepler 
The Kepler project1 aims to produce an open source scientific 
workflow system that allows scientists to design and efficiently 
execute scientific workflows. Since 2003, Kepler has been used as 
a workflow system within over 20 diverse projects and multiple 
disciplines. 

Inherited from Ptolemy II2, Kepler adopts the actor-oriented 
modeling [8] paradigm for scientific workflow design and 
execution. Each actor is designed to perform a specific 
independent task that can be implemented as atomic or composite. 
Composite actors, or sub-workflows, are composed of atomic 
actors bundled together to perform complex operations. Actors in 
a workflow can contain ports to consume or produce data, called 
tokens, and communicate with other actors in the workflow 
through communication channels via links. 

Another unique property inherited from Ptolemy II is that the 
order of execution of actors in the workflow is specified by an 
independent entity called the director. The director defines how 
actors are executed and how they communicate with each other. 
The execution model defined by the director is called the Model of 
Computation [8]. Since the director is decoupled from the 
workflow structure, a user can easily change the computational 
model by replacing the director using the Kepler graphical user 
interface. As a consequence, a workflow can execute either in a 
sequential manner, e.g., using the Synchronous Data Flow (SDF) 
director, or in a parallel manner, e.g., using the Process Network 
(PN) director. 

Kepler provides an intuitive graphical user interface and an 
execution engine to help scientists to edit and manage scientific 
workflows and their execution. The execution engine can be 
separated from the user interface enabling the execution of 
existing workflows in batch mode. Actors are dragged and 
dropped onto Kepler canvas, where they can be customized, 
linked and executed. With built-in wizard tools, customized actors 
can be easily exported for reuse and sharing locally or publicly 
through the Kepler actor repository3. 

2.2 MapReduce and Hadoop 
The MapReduce [1] is a parallel and scalable programming model 
for data-intensive computing, where input data is automatically 
                                                                 
1 http://www.kepler-project.org/  
2 http://ptolemy.eecs.berkeley.edu/ptolemyII/ 
3 http://library.kepler-project.org/kepler/ 

partitioned onto multiple nodes and user programs are distributed 
and executed in parallel on the partitioned data blocks. It consists 
of two functions as shown in Table 1: Map function processes on 
a portion of the whole data set and produces a set of intermediate 
key-value pairs, and Reduce function accepts and merges the 
intermediate pairs generated from Map. MapReduce supports data 
partitioning, scheduling, load balancing, and fault tolerance. 
Following the simple interface of MapReduce, programmers can 
easily implement parallel applications. 

 
Table 1. MapReduce Programming model [1] 

map (k1,v1)   list(k2,v2) 
reduce (k2,list(v2))   list(v2) 

 

The Hadoop project [2] provides an open source implementation 
of MapReduce. It is composed of a MapReduce runtime system 
and a distributed file system, called HDFS. HDFS supports 
MapReduce execution with the capability of automatic data 
redundancy and diffusion among each node in the Hadoop cluster. 
Hadoop also handles node failures automatically. One Hadoop 
node, called master, dispatches tasks and manages the executions 
of the other Hadoop nodes, i.e., slaves. 

3. KEPLER + HADOOP ARCHITECTURE 
The Kepler + Hadoop architecture enables Kepler users to easily 
express and efficiently execute their domain-specific analyses 
with MapReduce. We explain this architecture in the following 
sub-sections. 

3.1 MapReduce Actor in Kepler 
A new composite actor called MapReduce is implemented in 
Kepler to provide a graphical user interface for expressing Map 
and Reduce logic. The MapReduce actor can then be placed in a 
larger workflow to connect the MapReduce functionality with the 
rest of the workflow. Since Map and Reduce are two separate 
functions, we treat Map and Reduce as two independent sub-
workflows in our MapReduce actor. The MapReduce actor and 
the separate Map and Reduce tabs for the two sub-workflows are 
shown in Figure 1. According to the interfaces of Map and 
Reduce in Table 1, we implement corresponding auxiliary actors 
that transfer their inputs and outputs. For instance, the Map 
function reads k1 and v1 as inputs and generates list (k2, v2).  
Corresponding actors, called MapInputKey, MapInputValue and 
MapOutputList are provided in Kepler. When users drag and drop 
the MapReduce actor onto Kepler canvas, the Map and Reduce 
sub-workflows are inside of it with the auxiliary input/output 



actors by default, showing as two separate tabs of the MapReduce 
actor. Users of the MapReduce actor only need to complete the 
two sub-workflows by dragging and dropping other Kepler actors 
to create sub-workflows that solve their domain-specific 
problems. The process is the same with that of constructing 
normal Kepler workflows. In the end, each MapReduce actor will 
have two separate sub-workflows containing Map and Reduce 
logic. 

As shown in Figure 1, the MapReduce actor has three input ports, 
namely trigger, inputPath and outputPath, and one output port, 
called result. The inputPath and outputPath ports specify the paths 
of input and output data. During the initialization phase of the 
MapReduce actor, input data can be transferred from the local file 
system to HDFS. This allows data dynamically produced by 
upstream actors in the workflow to be used by the MapReduce 
actor. Alternatively, the MapReduce actor can be configured to 
use input data already in HDFS, which fits the cases where input 
data is static and very large. The output data can also be 
optionally copied to the local file system via the outputPath port. 
The trigger port provides a control signal to run the actor; users 
may need other conditions for actor execution in addition to the 
availability of input data. The result port shows the success or 
failure of the MapReduce actor, which can be used to trigger 
downstream actors. 

As with any actor in Kepler, the MapReduce actor can be 
connected to other actors through its ports so that the tasks outside 
of the MapReduce programming model can be easily integrated in 
Kepler. This fits well with the characteristics of many scientific 
analyses that are composed of many tasks but only parts of them 
are suitable to utilize MapReduce. 

Users can also easily create domain-specific MapReduce actors 
for reuse and sharing. Once the Map and Reduce sub-workflows 
are created, a user can save them locally for private sharing or 
upload them to the centralized Kepler actor repository for public 
sharing. We will show a customized actor for a word count case in 
Section 4. Additional MapReduce actors are being studied to 
support complex domain-specific functions, such as CloudBurst 
algorithm in the bioinformatics domain [6], which uses 
MapReduce for highly sensitive read mapping, and read mapping 
spatial stochastic birth-death process simulation in the ecological 
domain [9, 10], , which could utilize  MapReduce for parallel 
execution of parameter sweep applications. 

3.2 MapReduce Actor Usage 
In this subsection we analyze the usage of our MapReduce actor 
for different user roles, and its corresponding benefits, which is 
illustrated in Figure 2.  
Actor developers understand the MapReduce programming model 
and know which domain-specific tasks can benefit from this 
model, so they can create domain-specific (also called 
customized) MapReduce actors by completing the Map and 
Reduce sub-workflows in Figure 1. Each domain-specific 
MapReduce actor will perform a certain independent function, 
such as the MapReduce4WordCount actor will count the 
occurrence number of each word in input files, and the 
MapReduce4CloudBurst actor will implement highly sensitive 
read mapping in bioinformatics. All this work can be done via 
Kepler GUI without writing a single program line. 
 

 
Figure 2: The usage of MapReduce actor. 

Workflow developers know the complete domain-specific 
requirements, so they can choose the needed domain-specific 
MapReduce actors from the actor library, and connect them with 
other necessary actors (e.g., actors for data pre-processing and 
post-processing). By reusing domain-specific MapReduce actors 
pre-defined by actor developers, workflow developers can easily 
compose workflows without knowing the MapReduce 
programming model. 
Since end users are acquainted with their concrete workflow 
configurations and execution environments, they can choose 
needed workflow from workflow library, configure actors in the 
workflow (such as providing input data and specifying workflow 
parameter values), and execute the whole workflow through the 
Kepler GUI or batch mode on target computing resources. By 
configuring and executing pre-constructed workflows, end users 
can easily fulfill their specific requirements without workflow 
composition knowledge. 

3.3 MapReduce Actor Execution in Hadoop 
As explained above, the MapReduce composite actor provides a 
capability for actor developers to express Map and Reduce logic 
as a part of their domain-specific workflows. The Hadoop 
framework provides powerful features such as data partitioning, 
parallel execution, load balancing, and fault tolerance. In this sub-
section, we will discuss how to combine the above efforts to 
achieve efficient execution of the MapReduce actor in Hadoop. 

The whole architecture is shown in Figure 3, which consists of 
three layers: the Kepler GUI, the Hadoop Master, and Map and 
Reduce Slaves.  One key principle of the MapReduce 
programming model is moving computation rather than moving 
data4. So during the initialization of the MapReduce actor, the 
input data stored in the local file system will be first transferred to 
HDFS, which will then automatically partition and distribute the 
data to Map Slaves. After the data stage-in phase, the Kepler 
execution engine and the Map/Reduce sub-workflows in the 
MapReduce actor will be distributed to slaves for Map/Reduce 
tasks. The Map/Reduce sub-workflows will be executed with the 
data blocks on the slaves. Throughout execution, Hadoop will  

                                                                 
4 
http://hadoop.apache.org/common/docs/current/hdfs_design.html  



 
Figure 3: Architecture for MapReduce actor execution in Hadoop. 

 

provide fault tolerance through slave monitoring and data 
replication mechanisms. After execution completes on the Hadoop 
slaves, the MapReduce actor will automatically transfer output 
data from HDFS to the path in the local file system specified in its 
outputPath port. As discussed in sub-section 3.1, users can also 
manually stage-in data before workflow execution and stage-out 
data after execution in order to save workflow execution time. 

 
Table 2. Execution semantics in Map and Reduce function for 

Kepler MapReduce actor 

map (k1, v1) { 
   initialize Kepler execution engine for Map sub-workflow 
   send k1 to Kepler engine via MapInputKey actor 
   send v1 to Kepler engine via MapInputValue actor 
   execute Map sub-workflow 
   get list(k2, v2) from Kepler engine via MapOutputList actor 
   emit  list(k2, v2) 
} 
 
reduce (k2, list(v2)) { 
   initialize Kepler execution engine for Reduce sub-workflow 
   send k2 to Kepler engine via ReduceInputKey actor 
   send list(v2) to Kepler engine via ReduceInputList actor 
   execute Reduce sub-workflow 
   get v2 from Kepler engine via ReduceOutputValue actor 
   emit (k2, v2) 
} 
 

We implemented the Map and Reduce interface provided by 
Hadoop. When execution begins, the input data read by the 
Hadoop slaves will be transferred to the Map and Reduce sub-
workflows by our auxiliary input actors, such as the MapInputKey 
and MapInputValue actor. Next, the Kepler engine will execute 

the Map/Reduce sub-workflows with the input data. Finally, our 
auxiliary output actors will transfer the output data of the sub-
workflows to the Hadoop slaves. The execution semantics for 
MapReduce actor execution in the Map and Reduce function are 
illustrated in Table 2.  

Our architecture provides a generic interface by which any 
MapReduce application can be created and executed. Kepler 
supports both GUI-based and batch mode execution. Our 
architecture supports all three execution modes of Hadoop5, i.e., 
local (standalone), pseudo-distributed, and fully-distributed. Users 
can easily switch execution modes by configuration. 

4. CASE STUDY 
In this section, we demonstrate the capability of our architecture 
via the commonly used word count problem [1], which counts the 
number of occurrences of each word in a large collection of 
documents. We show how to express word count with our 
architecture and discuss its execution performance. 

4.1 Word Count Workflow in Kepler 
The word count workflow in Kepler is presented in Figure 4, 
which consists of three parts: the top-level workflow, and the Map 
and Reduce sub-workflows in the MapReduce actor.  

The top-level workflow shows the overall logic. We customize the 
general MapReduce actor for word count, calling it 
MapReduce4WordCount. The local file system paths for the 
MapReduce input and output data are specified and sent to the 
MapReduce4WordCount actor through its input ports. The output 
path is also connected to the trigger port of the 
MapReduce4WordCount actor to start its execution. The output 
port of the MapReduce4WordCount actor is connected to the trig- 
                                                                 
5 http://hadoop.apache.org/common/docs/current/quickstart.html 



 
Figure 4: (a) Word count workflow in Kepler. (b) Map sub-workflow. (c) Reduce sub-workflow. (d) Sub-workflow in the 

IterateOverArray actor. 

ger port of the OutputDirectoryListing actor; when the execution 
of the MapReduce4WordCount actor completes, the files in the 
output path are listed, read and shown by the downstream actors. 
We choose the SDF director here since the actors in the top-level 
will be executed sequentially. The Map sub-workflow shows the 
Map logic for word count that will be executed in Hadoop. Each 
Map sub-workflow instance receives a different portion of the 
input text distributed by Hadoop; the MapInputValue actor sends 
out the input text as a token containing a string. The StringSplitter 
actor then separates the string into individual words, and the 
IterateOverArray actor generates key-value pairs for each word 
(the key is the word and the value is one). The key-values pairs 
are transferred back to Hadoop for Reduce via the MapOutputList 
actor. 

The Reduce sub-workflow contains the Reduce logic. The 
ReduceInputList actor produces an array containing the key-value 
pairs generated in Map, where the values of each element need to 
be accumulated. The Expression actor sums the values of all 
elements in the array, which will be output of this sub-workflow. 

This use case demonstrates the simplicity of designing 
MapReduce workflows in our architecture.  Based on the 
extensive actor library in Kepler, users can easily compose 
MapReduce workflows that solve their domain-specific problems. 
Furthermore, customized MapReduce actors, like the 
MapReduce4WordCount actor, can be easily reused and shared 
locally by choosing the ‘Save in Library’ item of its right click 
menu or shared publicly with the ‘Upload to Repository’ item. 
Moreover, users can utilize Hadoop transparently in our 
architecture. For instance, paths in HDFS do not need to be 
specified in this workflow, and by default, data will be 
automatically transferred to HDFS before MapReduce execution, 
and transferred back to the local file system after execution for 
downstream processing. 

4.2 Execution Experiments 
In this sub-section, we describe the execution performance of our 
architecture for the word count use case on a commodity cluster. 
The cluster has 20 nodes, each with 3.2 GB of memory and two 
2.4 GHz CPUs. For the input datasets, we use protein data bank 
files in the biochemistry domain, which include 1391 files, each 
with 3758 lines. The total input dataset size is about 348 MB. The 
test is uses Hadoop 0.20.0, each slave node is configured to have 
two concurrent Map tasks and one Reduce task, and the heap 
space is set as 1 GB.  

In the first experiment, we measured the scalability of the word 
count workflow. We also tested the sample implementation in 
Java for word count case from Hadoop project to see the 
performance difference. In order to measure execution time only, 
input data for all these experiments are transferred to HDFS 
beforehand, and Kepler workflows are executed in batch mode 
without counting execution time of downstream actors after the 
MapReduce4WordCount actor.  

Figure 5 shows the execution times for this experiment. There 
were around 1410 map tasks and 18 reduce tasks totally6. As the 
number of slave nodes increases, the execution times of both the 
Java implementation and our Kepler workflow decreases. 
Comparing the execution times with and without Kepler, we can 
see that it takes about four to six times longer using our 
architecture. Our investigation shows that this overhead is 
primarily due to Kepler engine initialization and Map/Reduce sub-
workflow parsing. The whole execution for the 348 MB input data 
invoked the Map/Reduce function about 20 million times, so the 
Map/Reduce sub-workflows were also executed for the same 

                                                                 
6 The Map and Reduce task numbers varies a little for different 

executions because some duplicate tasks are generated by 
Hadoop automatically for fault tolerance.  



number of times. Although the overhead for each Map or Reduce 
sub-workflow instance only takes about 10 milliseconds, the 
accumulative time is substantial compared to the execution time 
of word count implemented in Java, which is about 0.3 
milliseconds for each Map function invocation, and 0.03 
milliseconds for each Reduce function invocation. 

 
Figure 5: Experiment 1: execution of word count case. 

However, the characteristics of the common scientific problems 
are not fully modeled in this experiment. First, each Map function 
invocation only processed one line from its input data, whereas a 
more meaningful data unit for scientific problems is usually much 
larger. Second, the execution time of the Map and Reduce 
functions took less than 0.5 milliseconds, whereas a scientific 
computation unit usually lasts much longer.  

To simulate with larger data units in the Map function, we 
increased the data size from 1 to 50, 100, 500, and 1000 lines, and 
whole files (3758 lines) for each Map function invocation. The 
second experiment used the same input data of the first 
experiment and ran on 16 slave nodes. As shown in Figure 6, both 
executing with and without Kepler is faster if more data is 
processed in each Map function invocation, but it becomes slower 
if too much data is processed. We believe this speedup is due to 
the smaller overhead percentage along with more processing time 
for each Map function invocation. The slowdown resulting from 
sending larger data sizes is due to the decreased concurrency 
along with decreased the number of total Map function 
invocations. 

To simulate with longer computation time in Map and Reduce 
functions, we added a 0, 250, 500, 750, and 1000 milliseconds 
sleep for each Map function invocation and 10 milliseconds sleep 
for Reduce7 in the third experiment. Each Map function 
invocation processed 50 line input. The third experiment used the 
same input data and cluster configuration in the second 
                                                                 
7 The Reduce sleep time is configured to be much smaller than the 

Map sleep time because the Map phase is usually much longer 
than Reduce in most map/reduce applications.  

experiment. The results, shown in Figure 7, demonstrate that the 
overhead percentage with Kepler is approximately 10-15% if 
execution time and data unit size for each Map/Reduce function is 
not trivially small. Moreover, the overhead percentage decreases 
as the individual Map/Reduce execution time increases (from 
16.13% for 10 milliseconds sleep down to 10.97% for 1010 
milliseconds sleep).  

 
Figure 6: Experiment 2: execution with increased data size in 

Map. 

 
Figure 7: Experiment 3: execution with increased execution 

time in Map and Reduce. 

We note that the above experiments only demonstrate the 
execution time characteristics of applications using our 
architecture. Another important aspect is application construction 
time. Our experience shows that using Kepler can largely reduce 



the construction time by its intuitive GUI, especially for domain 
scientists who are not familiar with programming languages.  

5. RELATED WORK 
Due to the powerful programming model and good execution 
performance of MapReduce and Hadoop, there has been an 
increased effort to enable or utilize them in scientific workflow 
systems. These projects can be broadly classified into two 
categories. 

Several workflow systems have begun to support MapReduce or 
similar programming models, such as map and reduce constructs 
in VIEW [11], map, foldr and foldl constructs in Martlet [12], 
IterateOverArray actor in Kepler/Ptolemy II [8], and implicit 
iteration in Taverna [13]. The Master-Salve architecture in Kepler 
[10] and Service Distribution in Triana [14] can distribute data to 
multiple remote engines and run them in parallel. Scientific 
Workflow systems like Kepler [8], Pegasus [15], Swift [16], 
ASKALON [17] also support parallel job execution. However, to 
the best of our knowledge, none of the existing scientific 
workflow systems have been integrated with Hadoop. This means 
parallel execution on partitioned data is either not supported, or 
needs to be fully handled by the workflow systems themselves. 
By following the rule of “separation of concerns” in our 
architecture, Kepler provides MapReduce workflow composition 
and management in a graphical user interface while Hadoop takes 
care of MapReduce execution in distributed environments, so that 
characteristics of Hadoop such as automatic data partition and 
distribution, load balance and failure recovery can be naturally 
embraced in our architecture.  

There are studies to integrate Hadoop with workflow systems, but 
these efforts usually focus on a certain data organization or 
domain-specific problems, which restricts their generality. [18] 
proposes and compares different strategies for compiling XML 
data processing pipelines to a set of MapReduce tasks 
(implemented within Hadoop) for efficient execution. MRGIS [7] 
discusses how to use Hadoop for better performance in the 
geoinformatics domain, only script-based geoinformatics 
applications can be scheduled and submitted to Hadoop. Our 
architecture provides a general MapReduce actor where 
Map/Reduce functions can be easily expressed by sub-workflows 
in the Kepler GUI and the sub-workflows will be executed in 
Hadoop. There is no restriction on the data structure in our 
architecture, and complex data structures can be supported by 
extending the Hadoop input/output format interfaces.  Further, by 
customizing this actor, domain-specific MapReduce actors can be 
easily created, reused and shared. 

6. CONCLUSION AND FUTURE WORK 
Domain scientists greatly benefit from enhanced capability and 
usability of scientific workflow systems. By leveraging the 
workflow composition and management capabilities of Kepler, 
and the execution characteristics of Hadoop, we propose a general 
and easy-to-use architecture to facilitate data-intensive 
applications in scientific workflow systems. Scientists can easily 
create MapReduce sub-workflows, connect them with other tasks 
using Kepler, and execute them efficiently and transparently via 
the Hadoop infrastructure. Parallel execution performance can be 
achieved without bringing its complexity to users. The word count 
example validates the feasibility of our architecture, which 
facilitates MapReduce application construction and management 
with about 10% execution overhead for non-trivial applications. 

With the promising results so far, we will enhance our 
architecture in the future in several directions. The current 
prototype of our architecture will be refactored to enhance its 
capability, performance, and robustness. We are applying our 
architecture to concrete domain-specific scientific problems of 
ecology and bioinformatics in our ongoing projects. We are also 
working on enabling distributed provenance recording and 
querying in our architecture through Bigtable [19] and its Hadoop 
project HTable [20].  
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