
Kepler + Hadoop : A General Architecture Facilitating
Data-Intensive Applications in Scientific Workflow

Systems

Jianwu Wang, Daniel Crawl, Ilkay Altintas
San Diego Supercomputer Center, University of California, San Diego

9500 Gilman Drive, MC 0505
La Jolla, CA 92093-0505, U.S.A.

{jianwu, crawl, altintas}@sdsc.edu

ABSTRACT
MapReduce provides a parallel and scalable programming model
for data-intensive business and scientific applications.
MapReduce and its de facto open source project, called Hadoop,
support parallel processing on large datasets with capabilities
including automatic data partitioning and distribution, load
balancing, and fault tolerance management. Meanwhile, scientific
workflow management systems, e.g., Kepler, Taverna, Triana, and
Pegasus, have demonstrated their ability to help domain scientists
solve scientific problems by synthesizing different data and
computing resources. By integrating Hadoop with Kepler, we
provide an easy-to-use architecture that facilitates users to
compose and execute MapReduce applications in Kepler scientific
workflows. Our implementation demonstrates that many
characteristics of scientific workflow management systems, e.g.,
graphical user interface and component reuse and sharing, are
very complementary to those of MapReduce. Using the presented
Hadoop components in Kepler, scientists can easily utilize
MapReduce in their domain-specific problems and connect them
with other tasks in a workflow through the Kepler graphical user
interface. We validate the feasibility of our approach via a word
count use case.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed Applications; D.2.11 [Software
Engineering]: Software Architectures – Domain-specific
architectures.

General Terms
Design, Experimentation, Performance

Keywords
MapReduce, Kepler, Hadoop, scientific workflow, parallel
computing, distributed computing, easy-to-use.

1. INTRODUCTION
MapReduce [1] provides a parallel and scalable programming
model for data-intensive business and scientific analysis. Since
2003, MapReduce and the open source Hadoop [2] platform based
on MapReduce, have been successfully and widely used on many
business applications that require parallel processing on large
datasets. Currently, more and more large-scale scientific problems
are facing similar processing challenges on large scientific
datasets [3], where MapReduce could potentially help [4, 5].
There has been some work utilizing MapReduce and Hadoop for
scientific problems such as CloudBurst algorithm [6] in
bioinformatics and MRGIS framework [7] in geoinformatics.
However, there are still two main difficulties that make it hard for
domain scientists to benefit from this powerful programming
model. First, the application logic in MapReduce usually needs to
be expressed in traditional programming languages, such as Java
or shell scripts. It is not trivial for scientists to learn the
MapReduce API and write corresponding programs. Second, only
a part of the solution for a scientific problem is usually suitable to
utilize MapReduce. The MapReduce framework needs to be
easily integrated with other domain applications that do not
require MapReduce.

The contribution of this paper alleviates these difficulties through
a domain-independent and easy-to-use architecture that enables
the usage of MapReduce in scientific workflows by integrating
Hadoop with Kepler [8]. Through Kepler, a user-friendly open
source scientific workflow system, users can easily utilize
MapReduce in their domain-specific problems and connect them
with other tasks in a workflow through a graphical user interface.
Besides application composition and execution, the architecture
also supports easy reuse and sharing of domain-specific
MapReduce components through the Kepler infrastructure.

The paper is organized as follows. In Section 2, we describe
Kepler, MapReduce and Hadoop. The details of our architecture
are explained in Sections 3. Section 4 describes the application of
our architecture for a widely used word count use case. We
compare our work with related work in Section 5. Finally, we
conclude and explain future work in Section 6.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WORKS 09, November 15, 2009, Portland Oregon, USA.
Copyright 2009 ACM 978-1-60558-717-2/09/11...$10.00.

Figure 1. (a) MapReduce actor. (b) Map sub-workflow in MapReduce actor. (c) Reduce sub-workflow in MapReduce actor.

2. BACKGROUND
2.1 Kepler
The Kepler project1 aims to produce an open source scientific
workflow system that allows scientists to design and efficiently
execute scientific workflows. Since 2003, Kepler has been used as
a workflow system within over 20 diverse projects and multiple
disciplines.

Inherited from Ptolemy II2, Kepler adopts the actor-oriented
modeling [8] paradigm for scientific workflow design and
execution. Each actor is designed to perform a specific
independent task that can be implemented as atomic or composite.
Composite actors, or sub-workflows, are composed of atomic
actors bundled together to perform complex operations. Actors in
a workflow can contain ports to consume or produce data, called
tokens, and communicate with other actors in the workflow
through communication channels via links.

Another unique property inherited from Ptolemy II is that the
order of execution of actors in the workflow is specified by an
independent entity called the director. The director defines how
actors are executed and how they communicate with each other.
The execution model defined by the director is called the Model of
Computation [8]. Since the director is decoupled from the
workflow structure, a user can easily change the computational
model by replacing the director using the Kepler graphical user
interface. As a consequence, a workflow can execute either in a
sequential manner, e.g., using the Synchronous Data Flow (SDF)
director, or in a parallel manner, e.g., using the Process Network
(PN) director.

Kepler provides an intuitive graphical user interface and an
execution engine to help scientists to edit and manage scientific
workflows and their execution. The execution engine can be
separated from the user interface enabling the execution of
existing workflows in batch mode. Actors are dragged and
dropped onto Kepler canvas, where they can be customized,
linked and executed. With built-in wizard tools, customized actors
can be easily exported for reuse and sharing locally or publicly
through the Kepler actor repository3.

2.2 MapReduce and Hadoop
The MapReduce [1] is a parallel and scalable programming model
for data-intensive computing, where input data is automatically

1 http://www.kepler-project.org/
2 http://ptolemy.eecs.berkeley.edu/ptolemyII/
3 http://library.kepler-project.org/kepler/

partitioned onto multiple nodes and user programs are distributed
and executed in parallel on the partitioned data blocks. It consists
of two functions as shown in Table 1: Map function processes on
a portion of the whole data set and produces a set of intermediate
key-value pairs, and Reduce function accepts and merges the
intermediate pairs generated from Map. MapReduce supports data
partitioning, scheduling, load balancing, and fault tolerance.
Following the simple interface of MapReduce, programmers can
easily implement parallel applications.

Table 1. MapReduce Programming model [1]

map (k1,v1) list(k2,v2)
reduce (k2,list(v2)) list(v2)

The Hadoop project [2] provides an open source implementation
of MapReduce. It is composed of a MapReduce runtime system
and a distributed file system, called HDFS. HDFS supports
MapReduce execution with the capability of automatic data
redundancy and diffusion among each node in the Hadoop cluster.
Hadoop also handles node failures automatically. One Hadoop
node, called master, dispatches tasks and manages the executions
of the other Hadoop nodes, i.e., slaves.

3. KEPLER + HADOOP ARCHITECTURE
The Kepler + Hadoop architecture enables Kepler users to easily
express and efficiently execute their domain-specific analyses
with MapReduce. We explain this architecture in the following
sub-sections.

3.1 MapReduce Actor in Kepler
A new composite actor called MapReduce is implemented in
Kepler to provide a graphical user interface for expressing Map
and Reduce logic. The MapReduce actor can then be placed in a
larger workflow to connect the MapReduce functionality with the
rest of the workflow. Since Map and Reduce are two separate
functions, we treat Map and Reduce as two independent sub-
workflows in our MapReduce actor. The MapReduce actor and
the separate Map and Reduce tabs for the two sub-workflows are
shown in Figure 1. According to the interfaces of Map and
Reduce in Table 1, we implement corresponding auxiliary actors
that transfer their inputs and outputs. For instance, the Map
function reads k1 and v1 as inputs and generates list (k2, v2).
Corresponding actors, called MapInputKey, MapInputValue and
MapOutputList are provided in Kepler. When users drag and drop
the MapReduce actor onto Kepler canvas, the Map and Reduce
sub-workflows are inside of it with the auxiliary input/output

actors by default, showing as two separate tabs of the MapReduce
actor. Users of the MapReduce actor only need to complete the
two sub-workflows by dragging and dropping other Kepler actors
to create sub-workflows that solve their domain-specific
problems. The process is the same with that of constructing
normal Kepler workflows. In the end, each MapReduce actor will
have two separate sub-workflows containing Map and Reduce
logic.

As shown in Figure 1, the MapReduce actor has three input ports,
namely trigger, inputPath and outputPath, and one output port,
called result. The inputPath and outputPath ports specify the paths
of input and output data. During the initialization phase of the
MapReduce actor, input data can be transferred from the local file
system to HDFS. This allows data dynamically produced by
upstream actors in the workflow to be used by the MapReduce
actor. Alternatively, the MapReduce actor can be configured to
use input data already in HDFS, which fits the cases where input
data is static and very large. The output data can also be
optionally copied to the local file system via the outputPath port.
The trigger port provides a control signal to run the actor; users
may need other conditions for actor execution in addition to the
availability of input data. The result port shows the success or
failure of the MapReduce actor, which can be used to trigger
downstream actors.

As with any actor in Kepler, the MapReduce actor can be
connected to other actors through its ports so that the tasks outside
of the MapReduce programming model can be easily integrated in
Kepler. This fits well with the characteristics of many scientific
analyses that are composed of many tasks but only parts of them
are suitable to utilize MapReduce.

Users can also easily create domain-specific MapReduce actors
for reuse and sharing. Once the Map and Reduce sub-workflows
are created, a user can save them locally for private sharing or
upload them to the centralized Kepler actor repository for public
sharing. We will show a customized actor for a word count case in
Section 4. Additional MapReduce actors are being studied to
support complex domain-specific functions, such as CloudBurst
algorithm in the bioinformatics domain [6], which uses
MapReduce for highly sensitive read mapping, and read mapping
spatial stochastic birth-death process simulation in the ecological
domain [9, 10], , which could utilize MapReduce for parallel
execution of parameter sweep applications.

3.2 MapReduce Actor Usage
In this subsection we analyze the usage of our MapReduce actor
for different user roles, and its corresponding benefits, which is
illustrated in Figure 2.
Actor developers understand the MapReduce programming model
and know which domain-specific tasks can benefit from this
model, so they can create domain-specific (also called
customized) MapReduce actors by completing the Map and
Reduce sub-workflows in Figure 1. Each domain-specific
MapReduce actor will perform a certain independent function,
such as the MapReduce4WordCount actor will count the
occurrence number of each word in input files, and the
MapReduce4CloudBurst actor will implement highly sensitive
read mapping in bioinformatics. All this work can be done via
Kepler GUI without writing a single program line.

Figure 2: The usage of MapReduce actor.

Workflow developers know the complete domain-specific
requirements, so they can choose the needed domain-specific
MapReduce actors from the actor library, and connect them with
other necessary actors (e.g., actors for data pre-processing and
post-processing). By reusing domain-specific MapReduce actors
pre-defined by actor developers, workflow developers can easily
compose workflows without knowing the MapReduce
programming model.
Since end users are acquainted with their concrete workflow
configurations and execution environments, they can choose
needed workflow from workflow library, configure actors in the
workflow (such as providing input data and specifying workflow
parameter values), and execute the whole workflow through the
Kepler GUI or batch mode on target computing resources. By
configuring and executing pre-constructed workflows, end users
can easily fulfill their specific requirements without workflow
composition knowledge.

3.3 MapReduce Actor Execution in Hadoop
As explained above, the MapReduce composite actor provides a
capability for actor developers to express Map and Reduce logic
as a part of their domain-specific workflows. The Hadoop
framework provides powerful features such as data partitioning,
parallel execution, load balancing, and fault tolerance. In this sub-
section, we will discuss how to combine the above efforts to
achieve efficient execution of the MapReduce actor in Hadoop.

The whole architecture is shown in Figure 3, which consists of
three layers: the Kepler GUI, the Hadoop Master, and Map and
Reduce Slaves. One key principle of the MapReduce
programming model is moving computation rather than moving
data4. So during the initialization of the MapReduce actor, the
input data stored in the local file system will be first transferred to
HDFS, which will then automatically partition and distribute the
data to Map Slaves. After the data stage-in phase, the Kepler
execution engine and the Map/Reduce sub-workflows in the
MapReduce actor will be distributed to slaves for Map/Reduce
tasks. The Map/Reduce sub-workflows will be executed with the
data blocks on the slaves. Throughout execution, Hadoop will

4
http://hadoop.apache.org/common/docs/current/hdfs_design.html

Figure 3: Architecture for MapReduce actor execution in Hadoop.

provide fault tolerance through slave monitoring and data
replication mechanisms. After execution completes on the Hadoop
slaves, the MapReduce actor will automatically transfer output
data from HDFS to the path in the local file system specified in its
outputPath port. As discussed in sub-section 3.1, users can also
manually stage-in data before workflow execution and stage-out
data after execution in order to save workflow execution time.

Table 2. Execution semantics in Map and Reduce function for

Kepler MapReduce actor

map (k1, v1) {
 initialize Kepler execution engine for Map sub-workflow
 send k1 to Kepler engine via MapInputKey actor
 send v1 to Kepler engine via MapInputValue actor
 execute Map sub-workflow
 get list(k2, v2) from Kepler engine via MapOutputList actor
 emit list(k2, v2)
}

reduce (k2, list(v2)) {
 initialize Kepler execution engine for Reduce sub-workflow
 send k2 to Kepler engine via ReduceInputKey actor
 send list(v2) to Kepler engine via ReduceInputList actor
 execute Reduce sub-workflow
 get v2 from Kepler engine via ReduceOutputValue actor
 emit (k2, v2)
}

We implemented the Map and Reduce interface provided by
Hadoop. When execution begins, the input data read by the
Hadoop slaves will be transferred to the Map and Reduce sub-
workflows by our auxiliary input actors, such as the MapInputKey
and MapInputValue actor. Next, the Kepler engine will execute

the Map/Reduce sub-workflows with the input data. Finally, our
auxiliary output actors will transfer the output data of the sub-
workflows to the Hadoop slaves. The execution semantics for
MapReduce actor execution in the Map and Reduce function are
illustrated in Table 2.

Our architecture provides a generic interface by which any
MapReduce application can be created and executed. Kepler
supports both GUI-based and batch mode execution. Our
architecture supports all three execution modes of Hadoop5, i.e.,
local (standalone), pseudo-distributed, and fully-distributed. Users
can easily switch execution modes by configuration.

4. CASE STUDY
In this section, we demonstrate the capability of our architecture
via the commonly used word count problem [1], which counts the
number of occurrences of each word in a large collection of
documents. We show how to express word count with our
architecture and discuss its execution performance.

4.1 Word Count Workflow in Kepler
The word count workflow in Kepler is presented in Figure 4,
which consists of three parts: the top-level workflow, and the Map
and Reduce sub-workflows in the MapReduce actor.

The top-level workflow shows the overall logic. We customize the
general MapReduce actor for word count, calling it
MapReduce4WordCount. The local file system paths for the
MapReduce input and output data are specified and sent to the
MapReduce4WordCount actor through its input ports. The output
path is also connected to the trigger port of the
MapReduce4WordCount actor to start its execution. The output
port of the MapReduce4WordCount actor is connected to the trig-

5 http://hadoop.apache.org/common/docs/current/quickstart.html

Figure 4: (a) Word count workflow in Kepler. (b) Map sub-workflow. (c) Reduce sub-workflow. (d) Sub-workflow in the

IterateOverArray actor.

ger port of the OutputDirectoryListing actor; when the execution
of the MapReduce4WordCount actor completes, the files in the
output path are listed, read and shown by the downstream actors.
We choose the SDF director here since the actors in the top-level
will be executed sequentially. The Map sub-workflow shows the
Map logic for word count that will be executed in Hadoop. Each
Map sub-workflow instance receives a different portion of the
input text distributed by Hadoop; the MapInputValue actor sends
out the input text as a token containing a string. The StringSplitter
actor then separates the string into individual words, and the
IterateOverArray actor generates key-value pairs for each word
(the key is the word and the value is one). The key-values pairs
are transferred back to Hadoop for Reduce via the MapOutputList
actor.

The Reduce sub-workflow contains the Reduce logic. The
ReduceInputList actor produces an array containing the key-value
pairs generated in Map, where the values of each element need to
be accumulated. The Expression actor sums the values of all
elements in the array, which will be output of this sub-workflow.

This use case demonstrates the simplicity of designing
MapReduce workflows in our architecture. Based on the
extensive actor library in Kepler, users can easily compose
MapReduce workflows that solve their domain-specific problems.
Furthermore, customized MapReduce actors, like the
MapReduce4WordCount actor, can be easily reused and shared
locally by choosing the ‘Save in Library’ item of its right click
menu or shared publicly with the ‘Upload to Repository’ item.
Moreover, users can utilize Hadoop transparently in our
architecture. For instance, paths in HDFS do not need to be
specified in this workflow, and by default, data will be
automatically transferred to HDFS before MapReduce execution,
and transferred back to the local file system after execution for
downstream processing.

4.2 Execution Experiments
In this sub-section, we describe the execution performance of our
architecture for the word count use case on a commodity cluster.
The cluster has 20 nodes, each with 3.2 GB of memory and two
2.4 GHz CPUs. For the input datasets, we use protein data bank
files in the biochemistry domain, which include 1391 files, each
with 3758 lines. The total input dataset size is about 348 MB. The
test is uses Hadoop 0.20.0, each slave node is configured to have
two concurrent Map tasks and one Reduce task, and the heap
space is set as 1 GB.

In the first experiment, we measured the scalability of the word
count workflow. We also tested the sample implementation in
Java for word count case from Hadoop project to see the
performance difference. In order to measure execution time only,
input data for all these experiments are transferred to HDFS
beforehand, and Kepler workflows are executed in batch mode
without counting execution time of downstream actors after the
MapReduce4WordCount actor.

Figure 5 shows the execution times for this experiment. There
were around 1410 map tasks and 18 reduce tasks totally6. As the
number of slave nodes increases, the execution times of both the
Java implementation and our Kepler workflow decreases.
Comparing the execution times with and without Kepler, we can
see that it takes about four to six times longer using our
architecture. Our investigation shows that this overhead is
primarily due to Kepler engine initialization and Map/Reduce sub-
workflow parsing. The whole execution for the 348 MB input data
invoked the Map/Reduce function about 20 million times, so the
Map/Reduce sub-workflows were also executed for the same

6 The Map and Reduce task numbers varies a little for different

executions because some duplicate tasks are generated by
Hadoop automatically for fault tolerance.

number of times. Although the overhead for each Map or Reduce
sub-workflow instance only takes about 10 milliseconds, the
accumulative time is substantial compared to the execution time
of word count implemented in Java, which is about 0.3
milliseconds for each Map function invocation, and 0.03
milliseconds for each Reduce function invocation.

Figure 5: Experiment 1: execution of word count case.

However, the characteristics of the common scientific problems
are not fully modeled in this experiment. First, each Map function
invocation only processed one line from its input data, whereas a
more meaningful data unit for scientific problems is usually much
larger. Second, the execution time of the Map and Reduce
functions took less than 0.5 milliseconds, whereas a scientific
computation unit usually lasts much longer.

To simulate with larger data units in the Map function, we
increased the data size from 1 to 50, 100, 500, and 1000 lines, and
whole files (3758 lines) for each Map function invocation. The
second experiment used the same input data of the first
experiment and ran on 16 slave nodes. As shown in Figure 6, both
executing with and without Kepler is faster if more data is
processed in each Map function invocation, but it becomes slower
if too much data is processed. We believe this speedup is due to
the smaller overhead percentage along with more processing time
for each Map function invocation. The slowdown resulting from
sending larger data sizes is due to the decreased concurrency
along with decreased the number of total Map function
invocations.

To simulate with longer computation time in Map and Reduce
functions, we added a 0, 250, 500, 750, and 1000 milliseconds
sleep for each Map function invocation and 10 milliseconds sleep
for Reduce7 in the third experiment. Each Map function
invocation processed 50 line input. The third experiment used the
same input data and cluster configuration in the second

7 The Reduce sleep time is configured to be much smaller than the

Map sleep time because the Map phase is usually much longer
than Reduce in most map/reduce applications.

experiment. The results, shown in Figure 7, demonstrate that the
overhead percentage with Kepler is approximately 10-15% if
execution time and data unit size for each Map/Reduce function is
not trivially small. Moreover, the overhead percentage decreases
as the individual Map/Reduce execution time increases (from
16.13% for 10 milliseconds sleep down to 10.97% for 1010
milliseconds sleep).

Figure 6: Experiment 2: execution with increased data size in

Map.

Figure 7: Experiment 3: execution with increased execution

time in Map and Reduce.

We note that the above experiments only demonstrate the
execution time characteristics of applications using our
architecture. Another important aspect is application construction
time. Our experience shows that using Kepler can largely reduce

the construction time by its intuitive GUI, especially for domain
scientists who are not familiar with programming languages.

5. RELATED WORK
Due to the powerful programming model and good execution
performance of MapReduce and Hadoop, there has been an
increased effort to enable or utilize them in scientific workflow
systems. These projects can be broadly classified into two
categories.

Several workflow systems have begun to support MapReduce or
similar programming models, such as map and reduce constructs
in VIEW [11], map, foldr and foldl constructs in Martlet [12],
IterateOverArray actor in Kepler/Ptolemy II [8], and implicit
iteration in Taverna [13]. The Master-Salve architecture in Kepler
[10] and Service Distribution in Triana [14] can distribute data to
multiple remote engines and run them in parallel. Scientific
Workflow systems like Kepler [8], Pegasus [15], Swift [16],
ASKALON [17] also support parallel job execution. However, to
the best of our knowledge, none of the existing scientific
workflow systems have been integrated with Hadoop. This means
parallel execution on partitioned data is either not supported, or
needs to be fully handled by the workflow systems themselves.
By following the rule of “separation of concerns” in our
architecture, Kepler provides MapReduce workflow composition
and management in a graphical user interface while Hadoop takes
care of MapReduce execution in distributed environments, so that
characteristics of Hadoop such as automatic data partition and
distribution, load balance and failure recovery can be naturally
embraced in our architecture.

There are studies to integrate Hadoop with workflow systems, but
these efforts usually focus on a certain data organization or
domain-specific problems, which restricts their generality. [18]
proposes and compares different strategies for compiling XML
data processing pipelines to a set of MapReduce tasks
(implemented within Hadoop) for efficient execution. MRGIS [7]
discusses how to use Hadoop for better performance in the
geoinformatics domain, only script-based geoinformatics
applications can be scheduled and submitted to Hadoop. Our
architecture provides a general MapReduce actor where
Map/Reduce functions can be easily expressed by sub-workflows
in the Kepler GUI and the sub-workflows will be executed in
Hadoop. There is no restriction on the data structure in our
architecture, and complex data structures can be supported by
extending the Hadoop input/output format interfaces. Further, by
customizing this actor, domain-specific MapReduce actors can be
easily created, reused and shared.

6. CONCLUSION AND FUTURE WORK
Domain scientists greatly benefit from enhanced capability and
usability of scientific workflow systems. By leveraging the
workflow composition and management capabilities of Kepler,
and the execution characteristics of Hadoop, we propose a general
and easy-to-use architecture to facilitate data-intensive
applications in scientific workflow systems. Scientists can easily
create MapReduce sub-workflows, connect them with other tasks
using Kepler, and execute them efficiently and transparently via
the Hadoop infrastructure. Parallel execution performance can be
achieved without bringing its complexity to users. The word count
example validates the feasibility of our architecture, which
facilitates MapReduce application construction and management
with about 10% execution overhead for non-trivial applications.

With the promising results so far, we will enhance our
architecture in the future in several directions. The current
prototype of our architecture will be refactored to enhance its
capability, performance, and robustness. We are applying our
architecture to concrete domain-specific scientific problems of
ecology and bioinformatics in our ongoing projects. We are also
working on enabling distributed provenance recording and
querying in our architecture through Bigtable [19] and its Hadoop
project HTable [20].

7. ACKNOWLEDGMENTS
The authors would like to thank the rest of the Kepler team for
their collaboration, and Daniel Zinn for his feedback. This work
was supported by NSF SDCI Award OCI-0722079 for
Kepler/CORE, NSF CEO:P Award No. DBI 0619060 for REAP,
DOE SciDac Award No. DE-FC02-07ER25811 for SDM Center,
and UCGRID Project.

8. REFERENCES
[1] J. Dean and S. Ghemawat. MapReduce: Simplified Data

Processing on Large Clusters. In Proceedings of the 6th
Symposium on Operating Systems Design and
Implementation (OSDI 2004), pages 137-150. USENIX
Association, 2004.

[2] Apache Hadoop Project. http://hadoop.apache.org/core/.
[3] I. Gorton, P. Greenfield, A. Szalay, and R. Williams. Data-

Intensive Computing in the 21st Century. In Computer,
41(4):30-32, Apr. 2008, doi:10.1109/MC.2008.122.

[4] R. E. Bryant. Data-intensive Supercomputing: The Case for
DISC. Technical Report CMU-CS-07-128, Carnegie Mellon
University, 2007.

[5] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for
Data Intensive Scientific Analyses. In Proceedings of the 4th
IEEE International Conference on eScience (e Science
2008), pages 277-284, 2008.

[6] M. C. Schatz. Cloudburst: Highly Sensitive Read Mapping
with MapReduce. In Bioinformatics 2009 25(11):1363-1369.
Apr. 2009.

[7] Q. Chen, L. Wang, and Z. Shang. MRGIS: A MapReduce-
Enabled High Performance Workflow System for GIS. In
Proceedings of Workshop SWBES08: Challenging Issues in
Workflow Applications, the 4th IEEE International
Conference on eScience (e Science 2008), pages 646-651,
2008.

[8] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. B. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific
Workflow Management and the Kepler System. In
Concurrency and Computation: Practice and Experience,
18(10):1039-1065, 2006.

[9] P. R. Hosseini. Pattern Formation and Individual-Based
Models: The Importance of Understanding Individual-Based
Movement. In Ecological Modeling. 194(4): 357-371.
doi:10.1016/j.ecolmodel.2005.10.041. 2006.

[10] J. Wang, I. Altintas, P. R. Hosseini, D. Barseghian, D. Crawl,
C. Berkley, and M. B. Jones. Accelerating Parameter Sweep
Workflows by Utilizing Ad-hoc Network Computing
Resources: an Ecological Example. In Proceedings of IEEE
2009 Third International Workshop on Scientific Workflows

(SWF 2009), 2009 Congress on Services (Services 2009),
pages 267-274, 2009.

[11] X. Fei, S. Lu, and C. Lin. A MapReduce-Enabled Scientific
Workflow Composition Framework. In Proceedings of 2009
IEEE International Conference on Web Services (ICWS
2009), pages 663-670, 2009.

[12] D. J. Goodman. Introduction and Evaluation of Martlet: a
Scientific Workflow Language for Abstracted Parallelisation.
In Proceedings of the 16th International Conference on
World Wide Web (WWW 2007), pages 983-992, 2007.

[13] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M.
Greenwood, T. Carver, K. Glover, M. R. Pocock, A. Wipat,
and P. Li. Taverna: a tool for the composition and enactment
of bioinformatics workflows. In Bioinformatics, 20(17),
pages 3045-3054, Oxford University Press, London, UK,
2004.

[14] I. Taylor, M. Shields, I. Wang, and O. Rana. Triana
Applications within Grid Computing and Peer to Peer
Environments. In Journal of Grid Computing, 1(2):199-217.
Kluwer Academic Press, 2003.

[15] E. Deelman, G. Mehta, G. Singh, M. Su, and K. Vahi.
Pegasus: Mapping Large-Scale Workflows to Distributed
Resources. In I. Taylor, E. Deelman, D. Gannon, and M.

Shields, editors, Workflows for e-Science, pages 376-394.
Springer, New York, Secaucus, NJ, USA, 2007.

[16] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von
Laszewski, V. Nefedova, I. Raicu, T. Stef-Praun, and M.
Wilde. Swift: Fast, Reliable, Loosely Coupled Parallel
Computation. In Proceedings of 2007 IEEE Congress on
Services (Services 2007), pages 199-206, 2007.

[17] J. Qin and T. Fahringer. Advanced data flow support for
scientific grid workflow applications. In Proceedings of the
2007 ACM/IEEE Conference on Supercomputing (SC2007),
Article No. 42. 2007.

[18] D. Zinn, S. Bowers, S. Köhler, and B. Ludäscher.
Parallelizing XML Processing Pipelines via MapReduce. In
Special issue on Scientific Workflows Journal of Computer
and System Sciences, 2010. Accepted for publication.

[19] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A Distributed Storage System for
Structured Data. In Proceedings of the 7th Symposium on
Operating Systems Design and Implementation (OSDI 2006),
pages 205-218. USENIX Association, 2006.

[20] Apache HBase Project: http://hadoop.apache.org/hbase/.

